首页> 外文OA文献 >A discrete model for an ill-posed nonlinear parabolic PDE
【2h】

A discrete model for an ill-posed nonlinear parabolic PDE

机译:不适定非线性抛物线PDE的离散模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study a finite-difference discretization of an ill-posed nonlinear parabolic partial differential equation. The PDE is the one-dimensional version of a simplified two-dimensional model for the formation of shear bands via anti-plane shear of a granular medium. For the discretized initial value problem, we derive analytically, and observed numerically, a two-stage evolution leading to a steady-state: (i) an initial growth of grid-scale instabilities, and (ii) coarsening dynamics. Elaborating the second phase, at any fixed time the solution has a piecewise linear profile with a finite number of shear bands. In this coarsening phase, one shear band after another collapses until a steady-state with just one jump discontinuity is achieved. The amplitude of this steady-state shear band is derived analytically, but due to the ill-posedness of the underlying problem, its position exhibits sensitive dependence. Analyzing data from the simulations, we observe that the number of shear bands at time t decays like t-1/3. From this scaling law, we show that the time-scale of the coarsening phase in the evolution of this model for granular media critically depends on the discreteness of the model. Our analysis also has implications to related ill-posed nonlinear PDEs for the one-dimensional Perona-Malik equation in image processing and to models for clustering instabilities in granular materials. © 2001 Elsevier Science B.V. All rights reserved.
机译:我们研究了一个不适定的非线性抛物线偏微分方程的有限差分。 PDE是简化二维模型的一维版本,用于通过颗粒介质的反平面剪切来形成剪切带。对于离散化的初值问题,我们通过分析和数值观察得出一个导致稳态的两阶段演化过程:(i)网格规模不稳定性的初始增长,以及(ii)粗化动力学。详细说明第二阶段,在任何固定时间,解决方案均具有分段线性轮廓,其中有限数量的剪切带。在这个粗化阶段,一个剪切带一个接一个地塌陷,直到达到只有一个跳跃间断的稳态。该稳态剪切带的振幅是通过解析得出的,但是由于潜在问题的不适定性,其位置表现出敏感的依赖性。分析来自仿真的数据,我们观察到,在时间t处的剪切带数量衰减了t-1 / 3。从该缩放定律,我们表明,该模型在颗粒介质演化过程中的粗化阶段的时间尺度主要取决于模型的离散性。我们的分析还涉及图像处理中一维Perona-Malik方程的相关不适定非线性PDE,以及颗粒材料中的聚类不稳定性模型。 ©2001 Elsevier Science B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号